Jueves, 26 de Diciembre de 2024

Por qué Garfield es naranja: se revela el misterio detrás del color del icónico personaje gatuno

UruguayEl País, Uruguay 5 de diciembre de 2024

Dos estudios recientes desentrañan el "locus orange" y cómo una mutación genética en los gatos define el color de su pelaje. Hasta 700 genes regulan la pigmentación de piel y pelo en animales.

The Conversation
El gato Garfield, creado por el dibujante de cómic Jim Davis en 1978, es de color naranja. Como muchos otros gatos que tenemos en nuestras casas. Son gatos pelirrojos, como las personas pelirrojas, los caballos castaños o los perros de la raza setter irlandés. La diferencia estriba en que para todos los demás animales, incluidas las personas pelirrojas, sabemos por qué tienen ese color característico. Pero para los gatos (y para los felinos, en general), sorprendentemente, no lo sabíamos hasta ahora.



Acaban de darse a conocer sendos artículos en bioRxiv que explican genéticamente por qué hay gatos naranjas. Uno procede del laboratorio de Greg Barsh en la Universidad de Stanford, California. El otro, del laboratorio de Hiroyuki Sasaki de la Universidad de Kyushu, en Japón.







Eumelanina y feomelanina


Los mamíferos solamente tenemos dos pigmentos, dos colores de melanina: la eumelanina (marrón oscura, negruzca) y la feomelanina (amarillenta rojiza, naranja). Como deducirá, las personas pelirrojas solo fabrican feomelanina, mientras que las personas de piel oscura acumulan fundamentalmente eumelanina. El resto de colores de piel y pelo se sitúan por el medio, gracias a la acción de hasta 700 genes que regulan la pigmentación en animales.



En primates, caballos, roedores, perros, vacas y muchos otros animales, el control de la producción de la melanina y la decisión de producir eumelanina o feomelanina está en manos de una proteína de membrana llamada MC1R. Si una sustancia llamada hormona estimuladora del melanocito (alfa-MSH) "pulsa" ese botón, se inicia la producción de eumelanina en melanocitos. Si por el contrario entra en juego algún antagonista, como la proteína agouti de señalización (ASP) o la beta-defensina de los perros, se detiene la producción de eumelanina negra, y entonces son los melanocitos o células pigmentarias quienes producen la feomelanina naranja en su lugar.



Pero los gatos son harina de otro costal. El control de la producción de la eumelanina o feomelanina no está en manos del receptor MC1R, sino en manos de un locus (cuyo gen no se conocía hasta ahora) llamado orange. Un locus es un lugar del genoma del que se tiene constancia por sus efectos, por sus consecuencias (por ejemplo, pelaje negro o pelaje naranja) pero sin saber en detalle la secuencia precisa de ADN que contiene, ni el gen al que pertenece. Por eso primero se suele identificar el locus y, con el tiempo, como sucede en este caso, llegamos a descubrir y describir en detalle el gen asociado. El locus orange de los gatos puede presentarse en dos versiones: una variante "O" que soporta la producción de feomelanina (naranja) y una variante "o" que es la responsable de producir eumelanina (negra).



Un detalle a tener en cuenta es que el locus orange está en el cromosoma X. Las hembras de gato son XX y los machos de gato XY, como el resto de mamíferos. Y como ocurre en todas las hembras de mamíferos, todas las células a lo largo del desarrollo inactivarán, al azar, una de las dos copias del cromosoma X. Las gatas Oo -que portan la variante O en un cromosoma X y la variante o en el otro- generarán zonas de su cuerpo de un color naranja (en las zonas donde han inactivado el alelo "o") y otras de color negro (al inactivar inactivado el alelo "O"). Eso quiere decir que cuando vemos un gato bicolor (negro/naranja) o tricolor (negro/naranja/blanco), o alguna de sus versiones más diluidas, sabemos que tiene que ser una hembra. Y que ese patrón de pigmentación será único, irrepetible. Los gatos machos o son naranjas o son negros (solo tienen un cromosoma X), pero no pueden ser bicolores o tricolores, a no ser que porten alguna alteración cromosómica equivalente al síndrome de Klinefelter en humanos (XXY).


Las hembras pueden tener estos patrones mosaicos únicos, que cuando coinciden con otra mutación que afecta a la proliferación y diferenciación de melanocitos (y produce manchas blancas, sin pigmentación) genera un animal tricolor que llamamos calicó. Cada hembra calicó es única, dado que la inactivación de uno de los cromosomas X en cada célula pigmentaria se produce al azar durante el desarrollo. Cuanto antes se produzca esta inactivación, más grande será la mancha resultante; y cuanto más tarde se produzca durante el desarrollo, más pequeñas serán las manchas.



Hasta ahora desconocíamos qué gen que se ocultaba tras el locus orange de los felinos. Barsh y Sasaki acaban de identificar que no se trata del homólogo gatuno del MC1R, sino de otro diferente: el gen Arhgap36. Los gatos macho de pelaje naranja, así como las manchas naranjas de las gatas calicó, portan una mutación en este gen que bloquea la producción de eumelanina y permite la producción de feomelanina.



Estos dos estudios son un ejemplo de lo que es la investigación básica, la que solo persigue satisfacer la curiosidad científica sin aplicaciones inmediatas ni conocidas. Y entender, en este caso, por qué el pillo de Garfield es naranja.


La Nación Argentina O Globo Brasil El Mercurio Chile
El Tiempo Colombia La Nación Costa Rica La Prensa Gráfica El Salvador
El Universal México El Comercio Perú El Nuevo Dia Puerto Rico
Listin Diario República
Dominicana
El País Uruguay El Nacional Venezuela